Monotone and fast computation of Euler’s constant
نویسندگان
چکیده
We construct sequences of finite sums [Formula: see text] and [Formula: see text] converging increasingly and decreasingly, respectively, to the Euler-Mascheroni constant γ at the geometric rate 1/2. Such sequences are easy to compute and satisfy complete monotonicity-type properties. As a consequence, we obtain an infinite product representation for [Formula: see text] converging in a monotone and fast way at the same time. We use a probabilistic approach based on a differentiation formula for the gamma process.
منابع مشابه
Fast Multiprecision Evaluation of Series of Rational Numbers
We describe two techniques for fast multiple-precision evaluation of linearly convergent series, including power series and Ramanujan series. The computation time for N bits is O((logN)M(N)), whereM(N) is the time needed to multiply twoN -bit numbers. Applications include fast algorithms for elementary functions, π, hypergeometric functions at rational points, ζ(3), Euler’s, Catalan’s and Apéry...
متن کاملEconomical Design of Double Variables Acceptance Sampling With Inspection Errors
The paper presents an economical model for double variable acceptance sampling with inspection errors. Taguchi cost function is used as acceptance cost while quality specification functions are normal with known variance. An optimization model is developed for double variables acceptance sampling scheme at the presence of inspection errors with either constant or monotone value functions. The m...
متن کاملFr{'e}chet and Hausdorff Queries on $x$-Monotone Trajectories
vspace{0.2cm}In this paper, we design a data structure for the following problem. Let $pi$ be an $x$-monotone trajectory with $n$ vertices in the plane and $epsilon >0$. We show how to preprocess $pi$ and $epsilon$ into a data structure such that for any horizontal query segment $Q$ in the plane, one can quickly determine the minimal continuous fraction of $pi$ whose Fr{'e}chet and Hausdo...
متن کاملSets of Monotonicity for Euler’s Totient Function
We study subsets of [1, x] on which the Euler φ-function is monotone (nondecreasing or nonincreasing). For example, we show that for any > 0, every such subset has size < x, once x > x0( ). This confirms a conjecture of the second author.
متن کاملOn Efficiency of Non-Monotone Adaptive Trust Region and Scaled Trust Region Methods in Solving Nonlinear Systems of Equations
In this paper we run two important methods for solving some well-known problems and make a comparison on their performance and efficiency in solving nonlinear systems of equations. One of these methods is a non-monotone adaptive trust region strategy and another one is a scaled trust region approach. Each of methods showed fast convergence in special problems and slow convergence in other o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017